

Forest storm resilience depends on the interplay between functional composition and climate - insights from Europeanscale simulations

Julien Barrere, Björn Reineking, Maxime Jeaunatre, Georges Kunstler

INRAE, LESSEM Research Unit, Grenoble (France)

British Ecological Society annual meeting Belfast, 15/12/2023

Storm disturbances in a changing world

o Windstorms: main disturbance agent in Europe ¹

and climate drive European forest s

¹ Senf et al. 2021 – Nature Sustainability

and climate drive European forest s

Storm disturbances in a changing world

- o Windstorms: main disturbance agent in Europe
- Over the past decades, increasing rates of storms disturbances observed across Europe ^{1,2,3}

¹ Senf et al. 2021 – Nature Sustainability
 ² Patacca et al. 2022 – Global Change Biology
 ³ Seidl et al. 2011 – Global Change Biology

Storm disturbances in a changing world

- o Windstorms: main disturbance agent in Europe
- o Over the past decades, increasing rates of storms disturbances observed across Europe ^{1,2,3}

Importance to identify the factors driving the resilience of European forests to storms
 ➔ Forest composition ?

n and climate drive European forest st

¹ Senf et al. 2021 – Nature Sustainability
 ² Patacca et al. 2022 – Global Change Biology
 ³ Seidl et al. 2011 – Global Change Biology

on and climate drive European forest st

The concept of resilience to disturbances

o Resilience: Many definitions, but common features¹.

¹ Lloret et al. 2023 – Resonate WP1 report

ion and climate drive European forest st

The concept of resilience to disturbances

o Resilience: Many definitions, but common features¹.

 \rightarrow Can be decomposed in two phases

¹ Lloret et al. 2023 – Resonate WP1 report

ion and climate drive Europea<u>n forest st</u>

The concept of resilience to disturbances

m resilience – L Ba

- o Resilience: Many definitions, but common features¹.
 - \rightarrow Can be decomposed in two phases
- o These metrics are driven by different demographic processes²

¹ Lloret et al. 2023 – Resonate WP1 report

² Falk et al. 2022 – For Ecol & Man

es composition and climate drive European forest st

The effect of diversity on resilience

 Diversity can improve recovery via two mechanisms ^{1,2}

> ¹ Tilman 2001 ² Loreau et al. 2001 – *Science*

The effect of diversity on resilience

1. The sampling effect

Higher chances of having fast-growing species in a diverse stand

pn and climate drive European forest s

o Diversity can improve recovery via two mechanisms ^{1,2}

¹ Tilman 2001 ² Loreau et al. 2001 – *Science*

The effect of diversity on resilience

2. Complementarity niche

More efficient use of resources with diverse species

sition and climate drive European forest st

m resilience – J. Barre

o Diversity can improve recovery via two mechanisms ^{1,2}

¹ Tilman 2001 ² Loreau et al. 2001 – *Science*

Higher chances of having resistant species in a diverse stand?

- o Diversity can improve recovery via two mechanisms ^{1,2}
- o Resistance : higher in more diverse system ^{2,3}
 - → in analogy with sampling effect ?

¹ Tilman 2001
² Loreau et al. 2001 – *Science*³ Isbell et al. 2015 – *Nature*

Additional effect of the functional composition

o It's not all about diversity: does the functional composition matter ?

on and climate drive European forest st

Additional effect of the functional composition

- o It's not all about diversity: does the functional composition matter ?
- For instance: functional trade-off between high storm resistance and high growth rate ¹

ion and climate drive European forest st

¹ Barrere et al. 2023 – *Global Change Biology*

Additional effect of the functional composition

- o It's not all about diversity: does the functional composition matter ?
- For instance: functional trade-off
 between high storm resistance and
 high growth rate ¹
- Analogous to a trade-off between resistance and recovery → which strategy best promotes resilience ?

m resilience – L Ba

n and climate drive European forest st

The role of climate

es composition and climate drive European forest st

m resilience – L Ba

On the *diversity effect*. Stressgradient hypothesis: higher diversity effect in stressful environments ¹

¹ Bertness & Callaway 1994 – TREE

Slide 6

The role of climate

ies composition and climate drive European forest sto

m resilience – J. Barre

On the *diversity effect*. Stressgradient hypothesis: higher diversity effect in stressful environments ¹

¹ Bertness & Callaway 1994 – TREE

Slide 6

es composition and climate drive European forest st

1) How does species composition (i.e., species diversity, functional diversity and mean functional strategy) affect resistance, recovery and resilience ?

1) How does species composition (i.e., species diversity, functional diversity and mean functional strategy) affect resistance, recovery and resilience ?

2) Are these effects consistent across a climatic gradient?

m resilience – J. Barre

o Simulation based, with an integral projection model (IPM) model ^{1,2}

on and climate drive European forest s

o Simulation based, with an integral projection model (IPM) model ^{1,2}

on and climate drive European forest st

o Simulation based, with an integral projection model (IPM) model ^{1,2}

ion and climate drive European forest s

Calibration of , survival and requitment functions f(climate, competition, species)

Integration of demographic functions to build IPM model

FUNDIV NFI data

Slide S

pecies composition and climate drive European forest sto

rm resilience – J. Barre

Slide

species

m resilience – J. Barre

cies composition and climate drive European forest st

Slide 9

ecies composition and climate drive European forest storm resilience – J. Barren

Slide S

cies composition and climate drive European forest st

m resilience – J. Barre

ies composition and climate drive European forest sto

rm resilience – J. Barre

o *Resistance* = percentage of basal area that survived disturbance

General effect of species composition on resilience

– I- R;

 Diversity (both in species and functional) improves all resilience metrics

Slide 1

General effect of species composition on resilience

- o Diversity (both in species and functional) improves all resilience metrics
- Higher effect of mean functional strategy than diversity

cies composition and climate drive European forest s

General effect of species composition on resilience

resilience - J. Barre

General effect of species composition on resilience

o The effect of diversity on recovery is constant along the climatic gradient
 → low competition in post-disturbance conditions ?

ion and climate drive European forest s

General effect of species composition on resilience

m resilience - J. Barre

The effect of diversity on recovery is constant along the climatic gradient
 Jow competition in post-disturbance conditions ?

 Effect of diversity on resistance higher in extreme climates

→ Stronger sampling effect at climatic margins ?

Take-home message

n and climate drive European forest s

 Diversity (species and/or functional) improves resistance, recovery and resilience

Take-home message

and climate drive European forest s

- o Diversity (species and/or functional) improves resistance, recovery and resilience
- The traits of the species dominating the community have a stronger effect on resilience than diversity

Resistance

Mean traits (growth -> survival) Species diversity Functional diversity

Take-home message

- o Diversity (species and/or functional) improves resistance, recovery and resilience
- The traits of the species dominating the community have a stronger effect on resilience than diversity
- o These effects may vary along climatic gradient

rm resilience – J. Ba

QUESTIONS?

For more on this study, read:

Barrere, J., Reineking, B., Jaunatre, M. & Kunstler G. (2024). Forest storm resilience depends on the interplay between functional composition and climate - insights from European-scale simulations. *Functional Ecology* (in press).

Or contact us !

Julien BARRERE INRAE, LESSEM (Grenoble) julien.barrere@inrae.fr https://jbarrere3.github.io/

Björn REINEKING INRAE, LESSEM (Grenoble) bjoern.reineking@inrae.fr

Maxime JAUNATRE INRAE, LESSEM (Grenoble) maxime.jaunatre@inrae.fr https://gowachin.github.io/

Georges KUNSTLER INRAE, LESSEM (Grenoble) georges.kunstler@inrae.fr https://kunstler.github.io/